

indovinya Vojir nepos ojir chemistry

Indovinya is the global specialty chemical and surfactants division of Indorama Ventures. We are the leading EO producer in the Americas, with operations across 10 countries and 15 manufacturing locations.

Indovinya is rooted in chemistry, powered by people, driven by innovation, and guided by sustainability and community impact.

Non-ionic surfactants producer in the **Americas**

#1

Supplier of Home Care ingredients in the Americas

> #1 Leading supplier in crop solutions in the Americas

> > **Footprint**

Global R&D Centers

Wax & Aspalthene

Deposition control

In the oil and gas industry, maintaining uninterrupted and safe fluid flow is vital to operational efficiency. Among the key challenges are wax and asphaltene deposits - petroleum compounds that can clog pipelines and equipment, restricting flow and increasing the risk of system failure.

Wax can crystallize in low-temperature environments leading to obstructions and reduced flow. On the other hand, asphaltenes can be destabilized and precipitate thereby fouling equipmentdue to changes in production conditions.

At Indovinya, our laboratory is equipped to test and evaluate new chemical solutions designed to address flow assurance challenges.

Brazil

• USA

Mexico

Uruguay

APAC Australia

• China

• India

EMEA • Belgium

Test capability

MICROSCOPE

Optical microscope equipped with heating stage, enabling analyses for particle morphologies. It is used for evaluating chemical effects on wax and asphaltenes.

FLOW ASSURANCE CELL

A customized device to study wax and asphaltene deposition. For wax deposition, it monitor pressure change across the capillary. For asphaltene, it can study deposition by either packedbed or capillary.

COLD FINGER

A recognized method for studying wax deposition in petroleum, allowing the evaluation of several formulations simultaneously.

FLOCCULATION

Optical probe titration device detects the appearance of asphaltene particles. Optical methods define the starting point and evaluate flocculation at the micrometric level.

TURBIDITY

Evaluates the stability of emulsions and suspensions over time. It allows the study of turbidity, sedimentation and flocculation by transmission and scattering of light.

DYNAMIC FLOW LOOP

One of the most rigorous laboratory test to simulate wax deposition in ducts, offering robust evaluation of wax inhibitors in the most demanding scenarios.

FLOW LOOP

The device tests fluids in heating and cooling cycles under high pressure, ensuring performance and stability of the formulation.

Dispersion tests
Deposition tests
Chemical stability

Wax control

Indovinya offers a complete portfolio of advanced chemical technologies aimed at controlling parrafin/wax deposition. Our solutions are developed to act directly in the mitigation of the formation and accumulation of paraffins, ensuring the integrity of the systems, the continuity of the flow and operational efficiency.

Among the main products aimed at this challenge, the following stand out: **SURFONIC® OFP**, **FLOWSOLVE®** and **ULTRAMINA®** — technologies engineered to meet different operating conditions and provide greater predictability, safetyand performance in processes. Indovinya also has PPD (Pour Point Depressants) technologies, based on Modified alpha olefin-maleic anhydride copolymer, which reduce the minimum temperature at which the oil can flow, preventing paraffin blockages in cold environments and ensuring greater efficiency.

Product	Appearance (@ 68 °F)	Active Content (wt%)	Pour Point (°C (°F))	Flash Point (Closed cup, °C (°F))	Registration	
					US (TSCA)	CANADA (DSL/n- DSL)
ALKYLBENZENE SU	ILFONATE-BASED					
SURFONIC® OFP 303	Dark liquid	60	-23 (-9)	23 (73)	\	/
SURFONIC® OFP 309	Dark liquid	60	-2 (-28)	35 (95)	\	/
SURFONIC® OFP 322	Yellow-amber liquid	60	-32 (-26)	8 (46)	\	/
SURFONIC® OFP 326	Dark liquid	60	<-34 (<-29)	9 (49)		
ETHOXYLATED TAL	LOW DIAMINE					
ULTRAMINA® DTA 70	Yellow-amber liquid	100	2 (36)	>93 (>200)	/	
MODIFIED ALPHA OLEFIN-MALEIC ANHYDRIDE COPOLYMER						
FLOWSOLVE® 430	Clear liquid	50	18 (64)	66 (150)		
SURFONIC® OFP 359	Clear to Hazy liquid	41	-24 (-11)	63 (145)		
SURFONIC® OFP 961	Tan to brown solid	82	47 (117)	79 (175)	/	✓
SURFONIC® OFP 962	Tan to brown solid	82	52 (126)	79 (175)	✓	<u> </u>
SURFONIC® OFP 963	Tan to brown solid	82	47 (117)	79 (175)	<u> </u>	<u> </u>
SURFONIC® OFP 964	Tan to brown solid	82	52 (126)	79 (175)	<u> </u>	<u> </u>
SURFONIC® OFP 965	Tan to brown solid	82	47 (117)	79 (175)	<u> </u>	<u> </u>

SURFONIC® OFP 964

Smart control for uninterrupted flow at any temperature

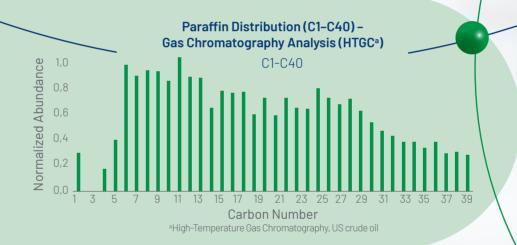
SURFONIC® OFP 964 is an modified alpha olefin-maleic anhydride copolymer that reduces the pour point and improves the flow of paraffinic oils. Prevents wax deposition in production systems, ensuring continuous operation at low temperatures. It is a versatile additive that acts as a pour point depressant (PPD), wax dispersant, and flow improver in upstream operations.

Features

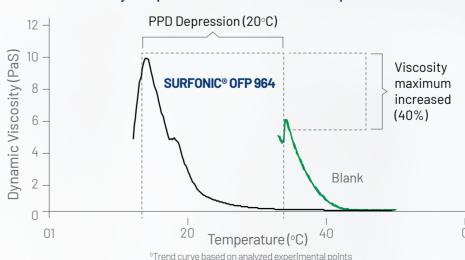
Wax crystal modifier compatible with multiple API grade oils

High efficiency in wax control even at low temperatures

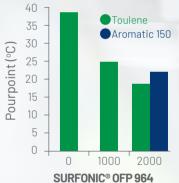
Benefits



Reduce pour point and mitigate clogging



Remedy deposition and maintains system pressure


Performance tests

Viscosity-Temperature Profile - Pour Point Depressant Effect^b

Cold filter plugging point (CFPP)

dosage (ppm)

6 Indovinya Indovinya

Asphaltene control

Indovinya offers a comprehensive portfolio of solutions focused on the control and mitigation of asphaltenes deposition. Our technologies are designed to effectively mitigate the deposition and agglomeration of these compounds, ensuring system integrity and uninterrupted production.

Indovinya offers high-performance chemical solutions designed to treat the impacts caused by asphaltenes. Our portfolio includes technologies such as **FLOWSOLVE®**, **SURFONIC® OFA**, **LAVREX®**, and **XOF** — each tailored to meet the specific needs of different operations. With these solutions, Indovinya positions itself a strategic partner in overcoming production challenges.

Product	Appearance (@ 68 °F)	Active Content (wt%)	Pour Point (°C (°F))	Flash Point (Closed cup, °C (°F))	Registration		
					EU (REACH)	US (TSCA)	CANADA (DSL/n- DSL)
ALKYLBENZENE SU	LFONATES (ANIONI	C)					
LAVREX® 200 BP	Clear brown liquid	97	-12 (10)	149 (300)		/	/
XOF 26A	Dark liquid	90	12 (54)	149 (300)		/	/
XOF 30A	Dark liquid	90	-20 (-4)	175 (347)		/	/
PIBSA-ALKANOLAM	IINE CONDENSATE						
SURFONIC® OFA 2524	Clear amber liquid	100	-2 (28)	137 (278)		/	/
POLYMER							
SURFONIC® OFA 830	Dark liquid	50	-50 (-58)	21(70)			
POLYOLEFIN ESTER							
FLOWSOLVE® 150	Clear brown liquid	50	-81 (-115)	70 (150)		/	/
FLOWSOLVE® 110 LN	Clear brown liquid	50	-27 (-17)	61 (142)	/	/	/
FLOWSOLVE® 113 LN	Clear brown liquid	50	-27 (-17)	61(142)	/	/	/
FLOWSOLVE® 212 LN	Clear brown liquid	50	-27 (-17)	61(142)	/	/	/
FLOWSOLVE® 250 AF	Clear brown liquid	50	<-4(<25)	130 (266)	/	/	/
VEGETABLE-BASED SURFACTANT (NON-IONIC)							
SURFONIC® VBS D-10	Clear liquid	100	-20 (-4)	105 (221)		/	/

FLOWSOLVE® 110 LN

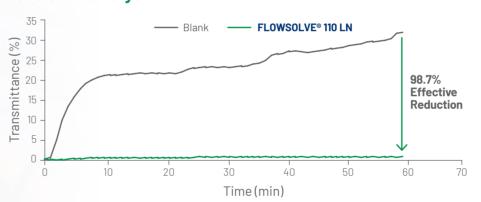
Low dosage, high impact: Engineered for reliable flow assurance

FLOWSOLVE® 110 LN is a medium molecular weight heteroatom-free polyolefin ester. It is designed as an effective asphaltene control agent with very low product pour point at 50% active. The product improves flow efficiency in oil production operations.

Features

Low foam and emulsion tendency

Benefits


Reduces chemical consumption, lowering costs

for Versatile Performance in different conditions

Performance tests

Turbiscan analysis¹

¹Ih Turbiscan studies (0.7 mL crude oil added to 24.3 mL heptane). Crude oil was heated at 70 °C for 6 Hrs before treated with 150 ppm of **FLOWSOLVE® 110 LN** (conc. based on 0.7 mL). Then heated overnight before test. Scan program: 1 scan/min for 1h.

Table 1. Crude oil properties (Middle east crude)

	Value	
SARA (IP-143)	Saturates	43.5%
	Aromatics	42.6%
	Resins	10.4%
	Asphaltenes	3.4%
	°API	37
	Density (g/cm³)	0.84
	Carbon Intensity Index (CII)	0.885

Table 2. Turbiscan Seperability¹

Entry	Traditional Turbiscan Seperability ^a		
Blank	6.38		
FLOWSOLVE® 110 LN	0.02		

^aDimensionless. Relative index based on optical variations (transmittance and backscatter) over time.

Deposition analysis

Table 3. Deposition device results²

Entry	Packed bed ^b	Capillary ^c
Blank	187mg	87mg
FLOWSOLVE® 110 LN	89mg	30mg
Reduction in deposition	-52%	-66%

- ²Oil sample handled in the same way as Turbiscan test. Both deposition tests were conducted at 70 ± 5 °C throughout the experiment (20 h). The total flow rate was 9 mL/h with 30% crude oil and 70% heptane. Cyclohexane was used for removing residual oil.
- ^bThe packed-bed column was a stainless tube 5" in length and 1/2" OD (0.083" wall), filled with 1.5 mm diameter beads with permeability 423 Darcy. Test operated at 100 psi back-pressure.
- °The capillary is 100 ft long 1/16" OD x 0.030" ID stainless steel tube. Tested at 50 psi back-pressure.

8 Indovinya 9

indovinya.indoramaventures.com

DISCLAIMER This information is provided in good faith, based on Indorama Ventures' current knowledge of the subject and is purely indicative. No information, including suggestions for using the products, should preclude experimental testing and verification, which are essential to ensuring the suitability of the products for each specific application. Consult the contact from your region or country regarding the availability of each product. All users must also respect local laws and obtain all the necessary permits. When handling the product, consult the safety data sheet. If you have any questions or additional needs, please contact Indorama Ventures through our customer service channels. Product trademarks may change by region. To ensure the selection of the appropriate brand for your location, please contact our regional sales team.

OCT/25