

Surfactants for Emulsion Polymerization

Presented by Bruno Dario June 20th, 2024

AGENDA

Surfactants for Emulsion Polymerization

- 1. Indorama Ventures
- 2. Origin and Sustainability
- 3. Polymers and Process
- 4. Stability and Surfactants
- 5. Case Studies
- 6. Quick Guide: Transition to APE-free
- 7. Q&A

OUR PURPOSE

Reimagining Chemistry Together to Create A Better World

Constant search for innovation

Value creation through sustainability

Purpose word choice explanation:

Why we exist

Over the last 20 years, IVL has acquired and integrated more than 50 companies into its business

One of the world's leading producers of PET with

Presence in

35 countries

Consolidated revenues of

US\$ 18.7 bi

Manufacturing Units

147

Employees

+ 26k

Purpose

REIMAGINING CHEMISTRY TOGETHER TO CREATE A BETTER WORLD

Combined PET*

Global leader in the production of PET and r-PET

*Combined PET - Feedstock, PTA, PET, Packaging and Recycling

FIBERS

Polyester fibers and yarns grouped into five categories: Home, Apparel, Hygiene and Medical, Automotive, and industrial/ technical.

INDOVINYA

Leader in the production of non-ionic surfactants in the Americas

Leader in EO production in the Americas Second largest ethoxylation company globally

WHERE WE ARE

AMERICAS

- Brazil
- Mexico
- United States
- Uruguay

- 8 countries
- 9 R&D centers
- 3,700 employees

Indovinya R&D facilities

Belgium

- Australia
- China
- India

Origin and Sustainability

Definitions

When we talk about EMULSION POLYMERIZATION it is important to remember that...

EMULSION

- Liquid dispersed in another liquid
 - E.g., Mayonnaise
- Monomers emulsified in water

AS WE POLYMERIZE

- Monomers will create a polymer, which is a solid stabilized in water. A DISPERSION or a COLLOID
 - E.g., Natural Latex

SO, TODAY

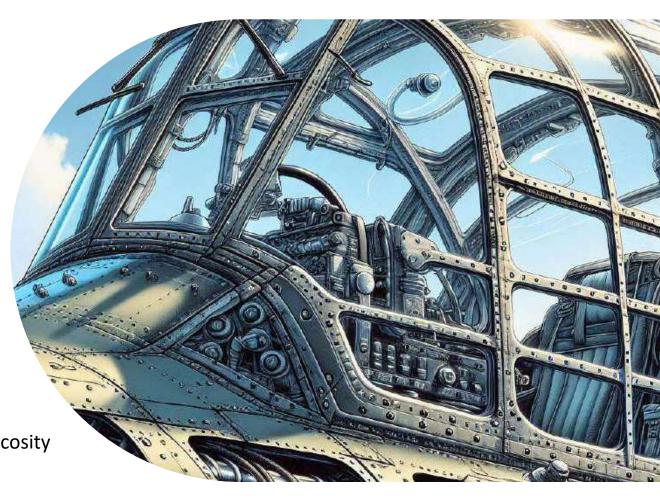
You will hear me talking about:

- Latex (synthetic)
- Emulsion Polymer
- Emulsion
- Resin
- Binder
- Dispersion

Origins and Importance

Emulsion Polymerization

World War II – shortage of natural rubber


Solution: free radical polymerization

Versatility

- Several types of polymers that can be made
- Wide variety of applications

Advantages:

- Remove the heat of polymerization
- High control of particle size and particle morphology
- High polymer concentration and high M.W. with low viscosity
- Environmental regulations: low VOC capabilities

Sustainability Key Drivers

CASE Market

Reduce **environmental** and **social impact**

Efficient use of resources

Enhance durability of materials

Reduce VOC emissions

Biobased alternatives

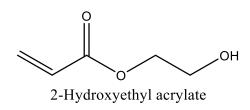
HSE friendly formulations

Energy efficiency in **production processes**

High **performance** in the **application**

Enhance short & long-term performance

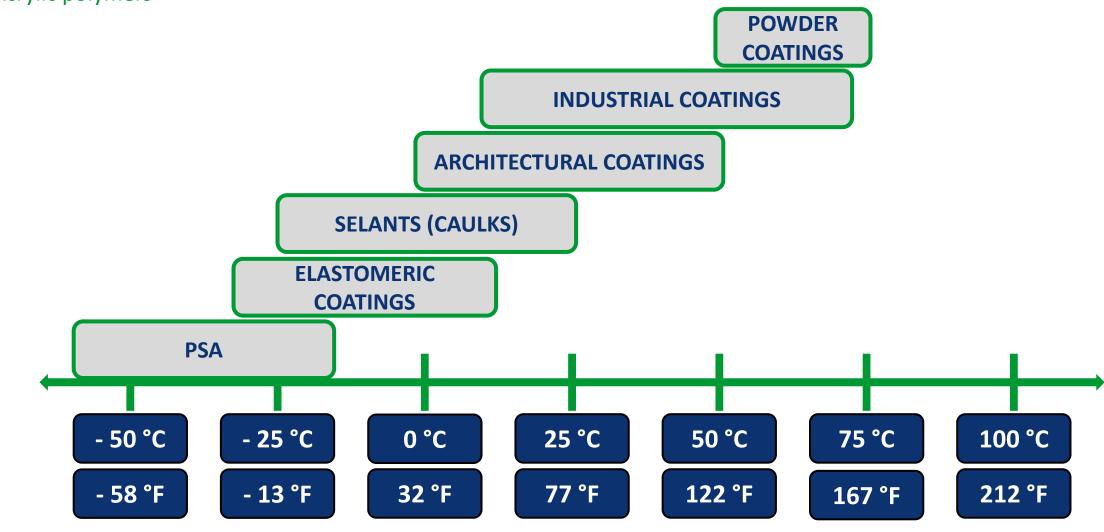
Polymers and Process



General Formulation

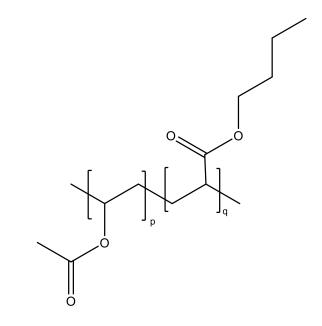
	% Weight		
Ingredients	Minimum	Maximum	
Water	50.0	55.0	
Surfactant	0.5	5.0	
Monomer	40.0	50.0	
Initiator	0.2	0.5	

Typical Monomers

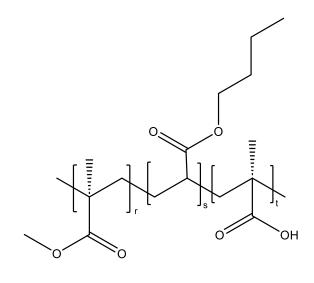

Monomer	Tg (°C)	Affinity for Water
2-Ethylhexyl acrylate	-64	Hydrophobic
N-butyl acrylate	-54	Hydrophobic
Methyl acrylate	8	Hydrophobic
Vinyl acetate	32	Hydrophilic
Styrene	100	Hydrophobic
Methyl methacrylate	106	Hydrophilic

HEMA Phosphate

Application and Tg


Acrylic polymers

Common Polymers applied in Architectural/Industrial Coatings


Styrene-acrylic

- Excellent hydrophobicity
- Excellent adhesion to metal/plastic
- Cost competitive
- Poor UV / durability

Vinyl-acrylic

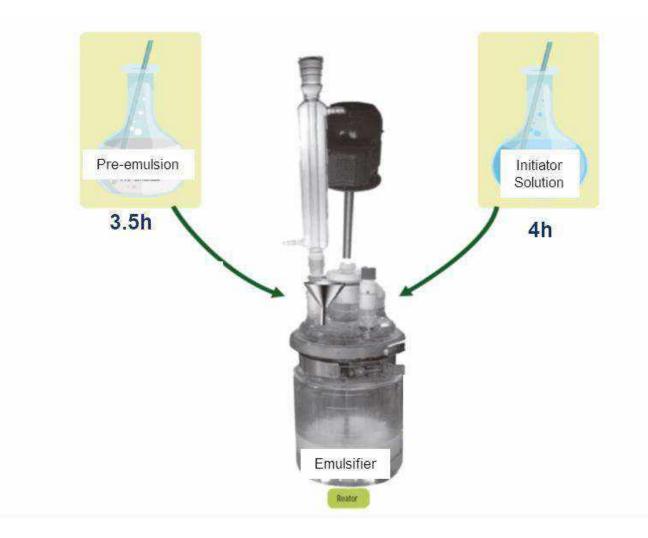
- Low-VOC capable (hydroplasticization)
- Good scrub resistance
- Good balance of performance and cost
- High solubility of vinyl-acetate

All-acrylic

- Premium resins
- Excellent durability / weatherability
- High chemical and oil resistance
- Can be more expensive

Diverting a little bit from the topic...

How do acrylics compare to other polymers applied in Architectural / Industrial Coatings?


Resin	UV Resistance	Chemical Resistance	Hardness	Flexibility	Heat Resistance	Cost
Air Dry Alkyd	G to VG	P to G	G to VG	P to G	P to G	VG to E
Alkyd Melamine	G to VG	G to VG	G to VG	G	G to VG	G to VG
Alkyd Urethane	VG	G to VG	G to VG	G	P to G	P to G
Polyester Melamine	VG to E	G to VG	G to VG	VG to E	G to VG	G to VG
Polyester Urethane	E	G to VG	G to VG	VG to E	P to G	P to G
PUD	VG to E	P to G	G to VG	VG to E	P to G	P to G
Acrylic Latex (1K)	VG to E	G to VG	G to VG	P to G	P to G	VG to E
Acrylic Melamine	VG to E	G to VG	VG to E	G to VG	G to VG	G to VG
Acrylic Urethane	VG to E	VG to E	VG to E	VG to E	G to VG	P to G
Epoxy Amide	Р	E	E	P to G	G to VG	G to VG

P= Poor, G=Good, VG=Very Good, E=Excellent

Emulsion Polymerization

Simplified setup

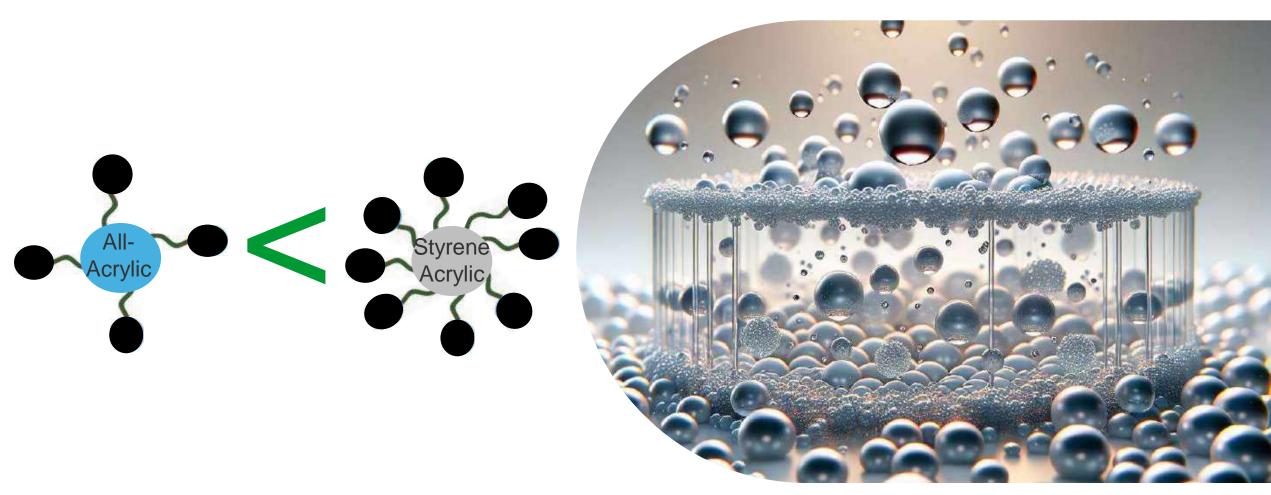
All-Acrylic Recipe Example

- 1. Prepare Initial charge and add to the reactor.
- 2. Heat up the reactor to 80-85°C under N2 atmosphere.
- **3.** Charge 5 wt.% of **Monomer** Pre-emulsion in the reactor.
- **4.** After this, add the **First Initiator Batch** in the reactor.
- **5.** Keep the reaction for 30 minutes at 80-85°C.
- **6.** Add 95 wt.% of **Monomer Pre-emulsion** for 3.5 hours.
- 7. Add 95 wt.% of Initiator Batch for 3.5 hours.
- **8.** After finishing the addition of **Monomer Pre-emulsion** and **Initiator Batch**, keep the reaction for 30 **minutes at 80-85°C.**
- **9.** Lower the temperature of reaction medium to 60°C.
- **10.** Add **Post-oxidizer** and **Post-reducer** simultaneously for 30 minutes in order to consume the free monomer.
- 11. Lower the temperature of reaction medium to 50°C.
- **12.** Adjust the pH to 8-9.
- **13.** Discharge the latex from the reactor and filter in a 200 Mesh sieve.

Parameters and Properties of Emulsion Polymers

Emulsion Polymerization

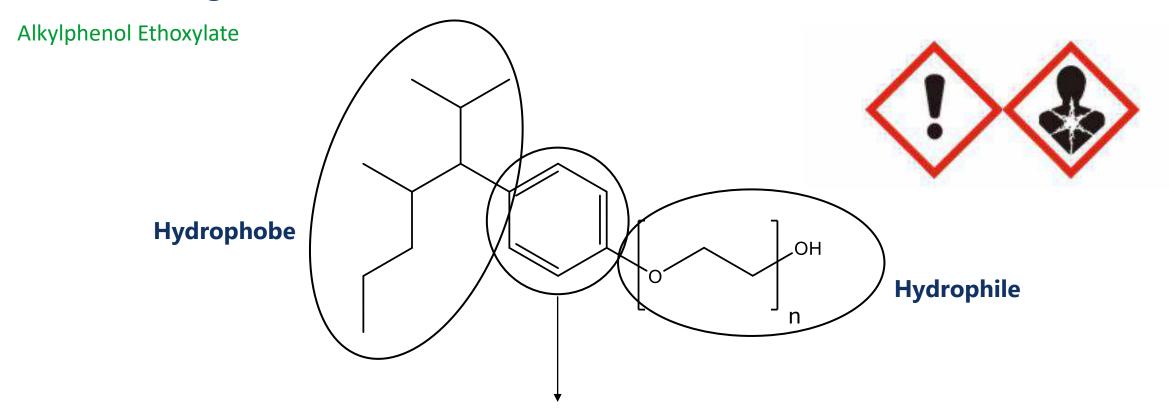
- Clot dispersed in the latex
- Polymer buildup on reactor surface
- Conversion time
- ...


Emulsion Polymer Properties

- Residual Monomer
- pH
- Solid Content
- Particle Size
- Viscosity
- Molecular Weight
- Tg
- Zeta Potential
- Mechanical Stability
- Electrolytic Stability
- ...

Stability and Surfactants

Colloidal Stability



Source: M. El-Aasser and P. Lovell, Emulsion Polymerization and Emulsion Polymers, Wiley, West Sussex, 1997

Surfactants – SURFACE ACTIVE AGENTS

When talking about surfactants... The most "famous" one:

- Polarizable Aromatic Ring
- Dense electronic cloud
- Creates a soft transition from hydrophobic to hydrophilic

Anionic Surfactants

(A)
$$H_3C$$
 $O = S = O$
 $O = Na^+$

(D)
$$H_3C$$
 O_{R^+}

Function:

- Monomer emulsification
- Polymerization speed
- Particle size distribution
- Clot formation
- Shelf-life stability
- Sensitive to salt concentration

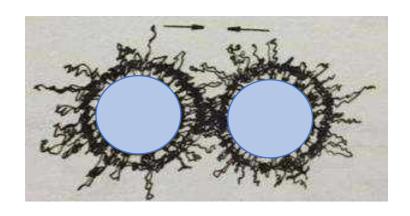
- (A) Sodium salt of sulfated lauryl alcohol
- (B) Sodium dodecylbenzene sulfonate
- **(C)** Sodium dioctyl sulfosuccinate
- (D) Potassium salt of phosphate lauryl alcohol

APE-free Anionic Surfactants

Tailoring surfactants to fit our customer's needs

PROPERTIES	OXIMULSION® 1228	OXIMULSION® 1328 APH	OXIMULSION [®] 11230
EO Content*	Low	Low	Medium
Appearance	Liquid	Liquid	Liquid
Solids, wt.%	28	28	28
CMC, g/L	0.27	0.28	0.34
S.T., 0.1%, mN/m	35	38	46

* Low: 0-10 EO Medium: 11-24 EO High: > 25 EO


⁽A) sodium salt of sulfated lauryl alcohol

⁽B) ammonium salt of ethoxylated lauryl alcohol

Nonionic Surfactants

Function

- Electrolytic Stability
- Stability during neutralization
- Mechanical Stability
- Freeze-thaw Stability
- Shelf-life

Higher steric repulsion is obtained when:

- Thick and dense layers
- Strong adsorption
- Complete coverage

APE-free Nonionic Surfactants

Tailoring surfactants to fit our customer's needs

Hydrophobe

- Fatty Alcohols
- Synthetic Alcohols
- Sorbitan esters

Type

- EO
- PO
- EO/PO

Size

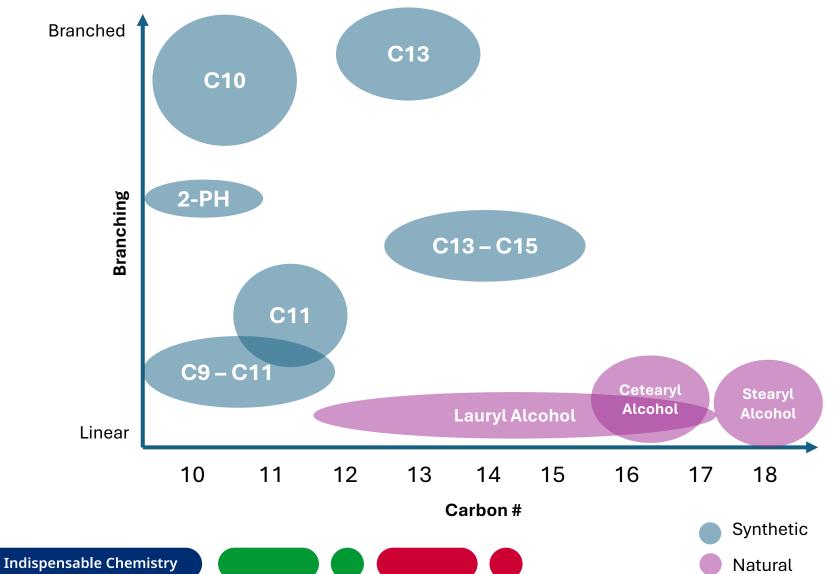
- # of Carbons
- EO units
- PO units

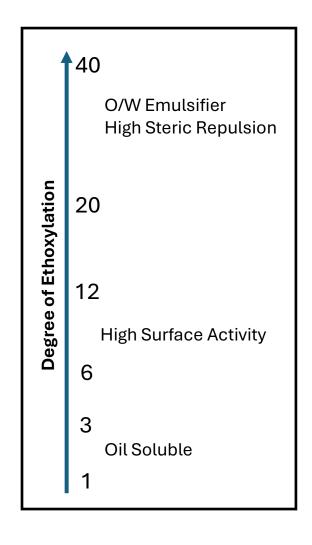
Structure

- Linear
- Branched

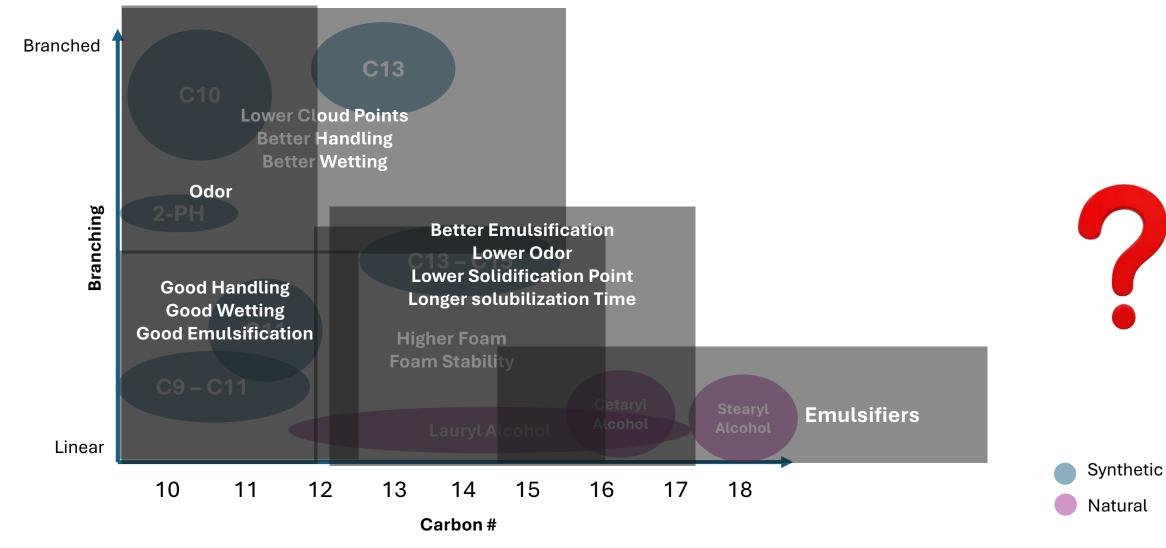
Distribution

- Broad range
- Narrow range


Sourcing


- Natural
- Synthetic

Alcohol Ethoxylates


Tailoring surfactants to fit our customer's needs

Alcohol Ethoxylates

Tailoring surfactants to fit our customer's needs

What to consider when choosing surfactants

- Clot Formation
- Particle Size and Control during the process
- ↑ Electrolyte Stability
- 个 Mechanical Stability
- ↑ Water Resistance

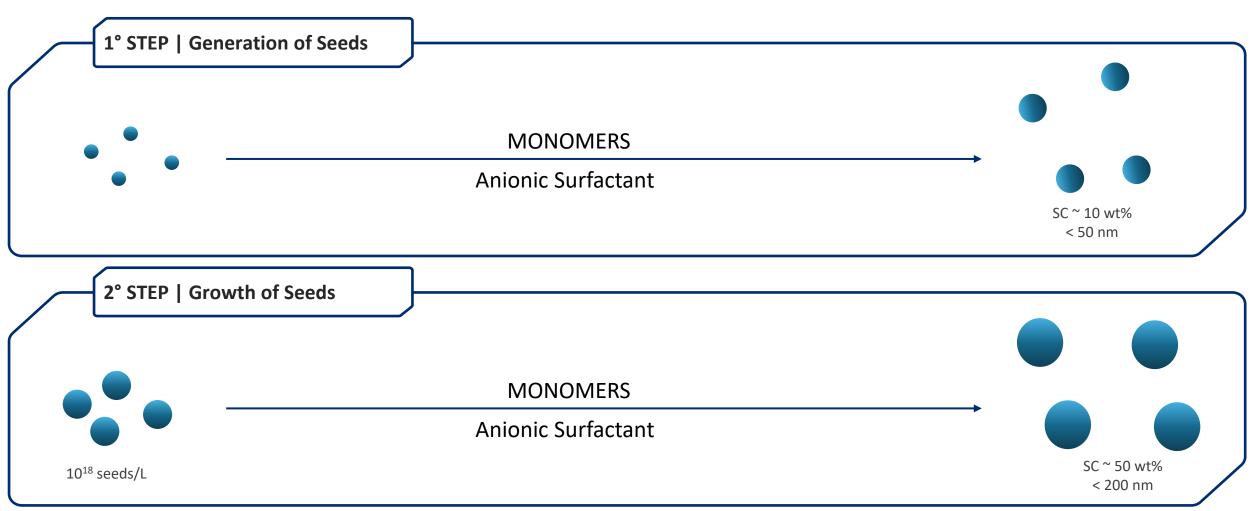
Sustainability Attributes

- **↑ BIODEGRADABILITY**
- **↓** TOXICITY
- ↑ [Renewable Content]
- ↑ Ease of processing / energy savings

Anionic Surfactants

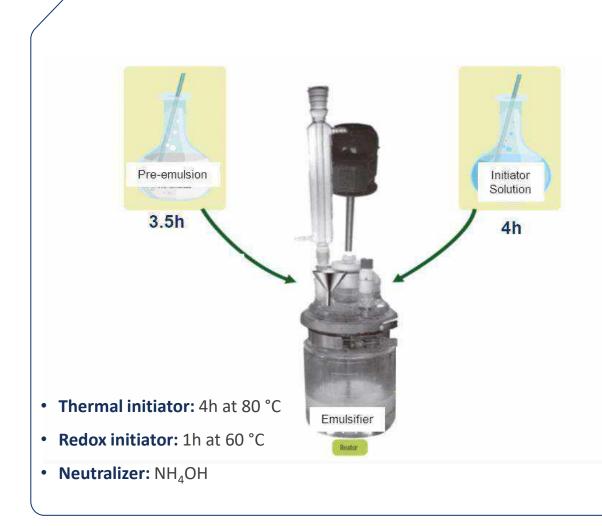
Anionic Surfactants

PROPERTIES	OXIMULSION® 1228	OXIMULSION® 1328 APH	OXIMULSION® 11230	OXIMULSION® 2742
Description	Sulfated	Sulfated	Sulfated	Phosphate
EO content*	Low	Low	Medium	Low
Appearance	Liquid	Liquid	Liquid	Liquid
Solid Content, wt.%	28	28	28	> 95
Solvent	Water	Water	Water	Water
рН	7	11	8	3
CMC, g/L	0.27	0.28	0.34	0.26
Surface tension, 0.1%, mN/m	35	38	46	28


High: > 25 EO

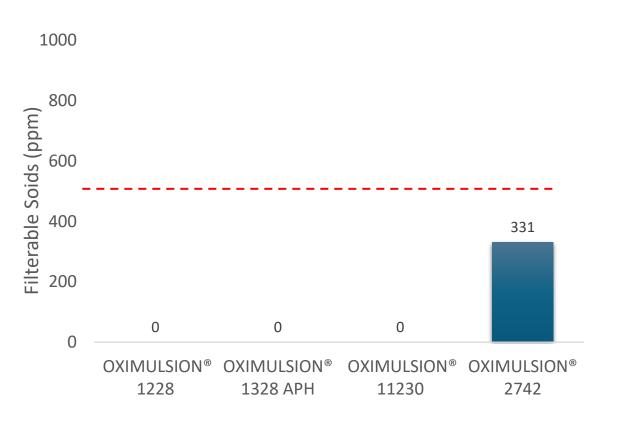
^{*} **Low**: 0-10 EO **Medium**: 11-24 EO

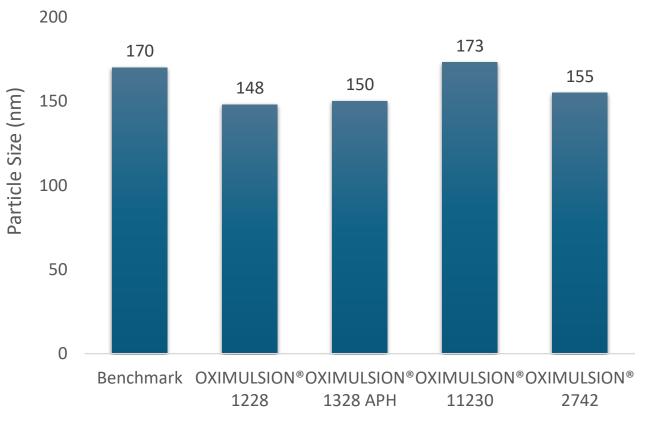
Two Step Process


Emulsion Polymerization

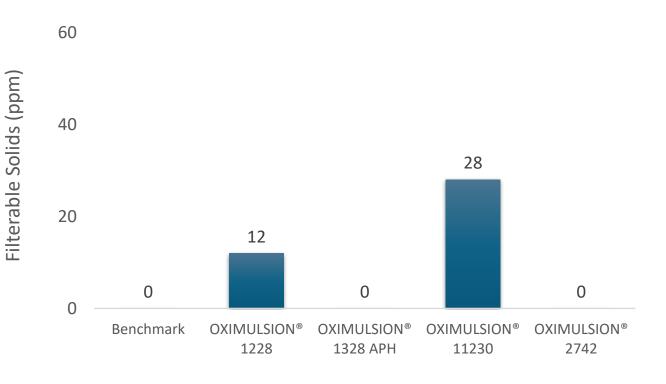
Source: Asua et. Al., Langmuir 2003, 19, 3212 - 3221.

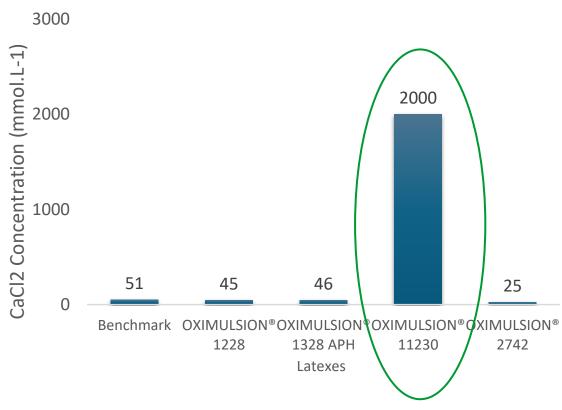
Formulations

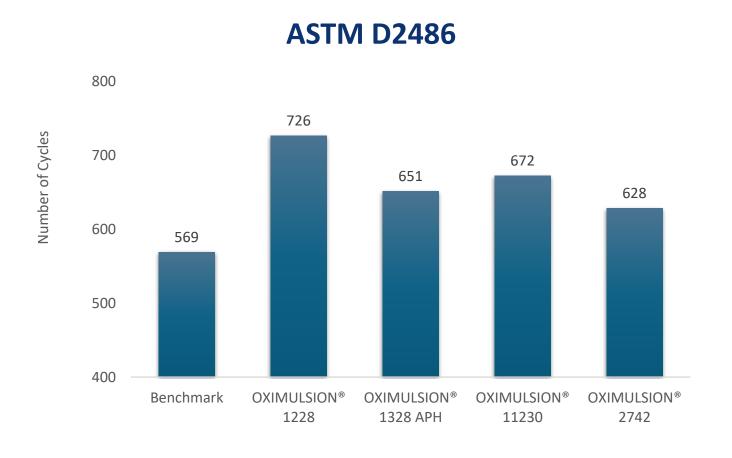

Components (phys)	Two Step Process			
Components (phm)	Step 1	Step 2		
Methyl methacrylate	50	50		
Butyl acrylate	48	48		
Methacrylic acid	1	1		
APE-free anionic surfactant	25	2		
Buffer	0.7	0.7		
Ammonium persulfate	0.6	0.6		
Oxidizing agent		0.04		
Reducing agent		0.04		



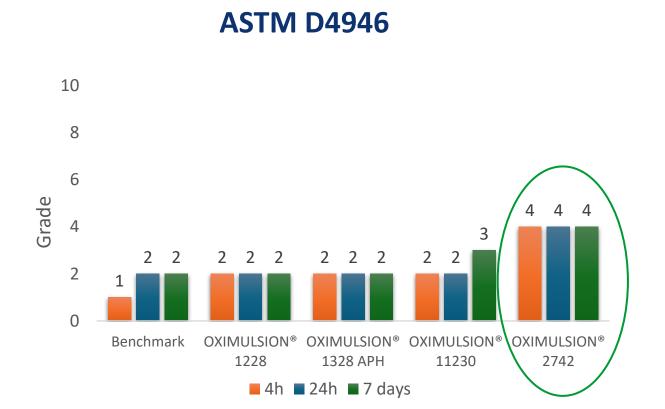
Formulations


		Seeded Process			
Properties	Benchmark	OXIMULSION® 1228	OXIMULSION® 1328 APH	OXIMULSION® 11230	OXIMULSION® 2742
Solid Content, wt.%	50	50	50	50	50
рН	9	9	9	9	9
Viscosity, 25°C, cP	300	281	235	186	185
Zeta Potential, mV	-77	-60	-59	-58	-56
Freeze-thaw stability (Cycles)	5	5	5	5	5

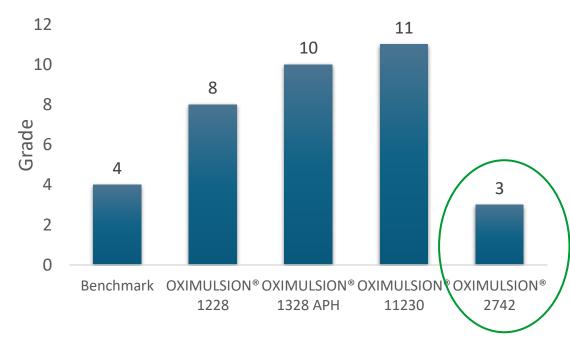

Effect of surfactant on coagulum formation in the reactor



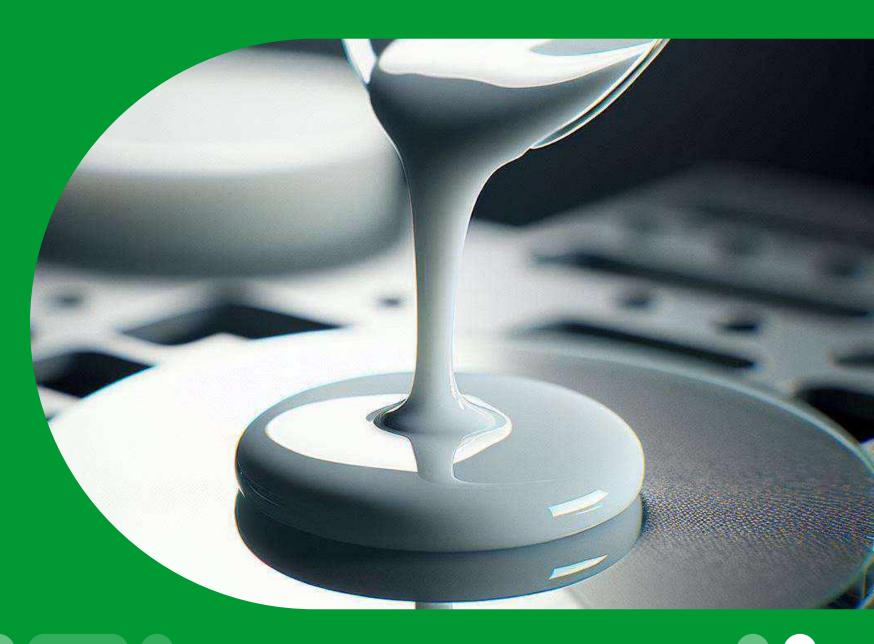
Effect of surfactant on mechanical stability



Effect of surfactant on wet scrub resistance of 30% PVC paint



Effect of surfactant on blocking evolution of 30% PVC paint



Dirt Pickup Rating: 1-11 / (1=Best)

Nonionic Surfactants

Emulsion Polymerization

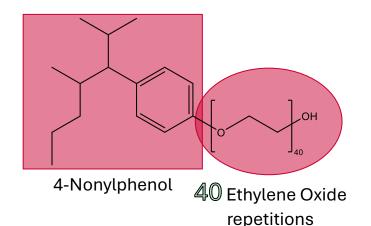
Vinyl-Acrylic Emulsion

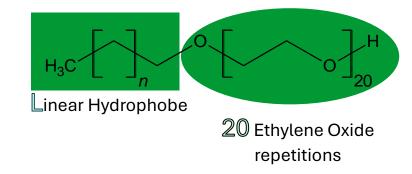
SURFONIC® NB-407

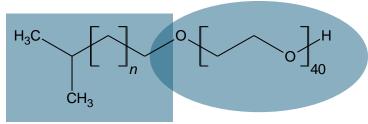
Physical-Chemical Properties

- Nonylphenol ethoxylated
- 40 EO
- HLB of 17.8
- 70 wt.% of solid content
- CMC of 0.76 g/L
- Surface tension of 40 mN/m (0.1 wt.%, 25°C)

OXITIVE® 7110


Physical-Chemical Properties


- Fatty alcohol ethoxylated
- Medium degree of ethoxylation
- HLB of 16.9
- 60 wt.% of solid content
- CMC of 0.19 g/L
- Surface tension of 40 mN/m (0.1 wt.%, 25°C)


OXITIVE® 7140

Physical-Chemical Properties

- Synthetic alcohol ethoxylated
- High degree of ethoxylation
- HLB of 18.0
- 70 wt.% of solid content
- CMC of 1.37 g/L
- Surface tension of 37 mN/m (0.1 wt.%, 25°C)

Branched Hydrophobe 40 Ethylene Oxide repetitions

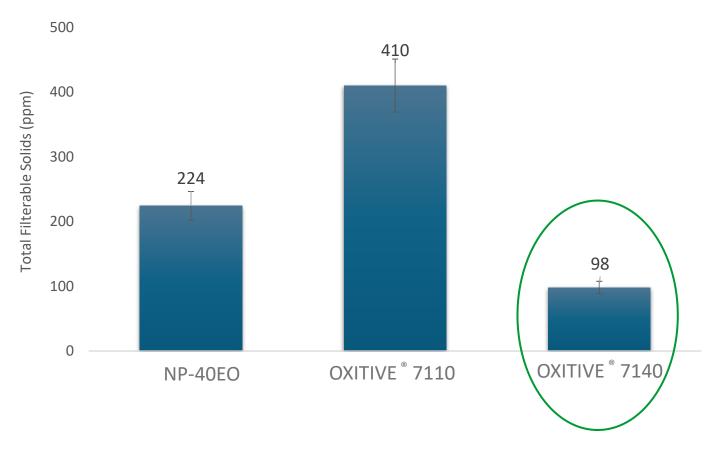
Vinyl-Acrylic Emulsion

SURFONIC® NB-407

OXITIVE® 7110

OXITIVE® 7140

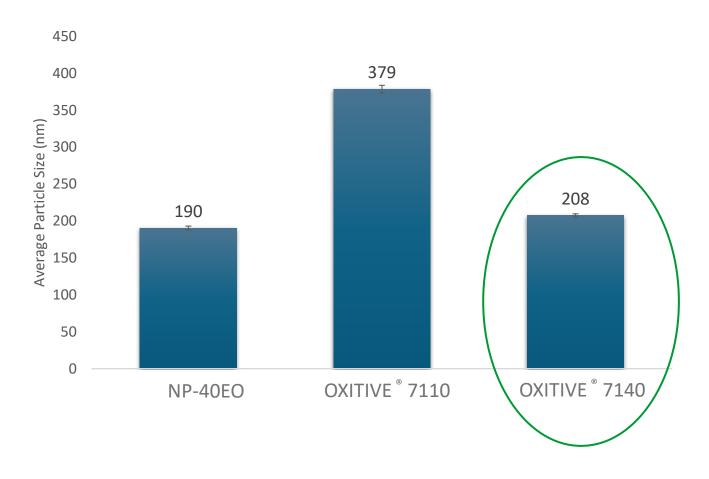
Components	Weight (%)	Components	Weight (%)	Components	Weight (%)
Initial Cha	arge	Initial Cha	rge	Initial Cha	rge
Water	34.6	Water	34.6	Water	34.5
Buffer	0.2	Buffer	0.2	Buffer	0.2
HEC	0.2	HEC	0.2	HEC	0.2
ALKOPON [®] NNP 940 HS 0.2		OXIMULSION ® 1128	0.3	OXIMULSION® 1228	0.3
SURFONIC® NB-407	3.4	OXITIVE® 7110 4.0		OXITIVE® 7140	3.4


Monomer Pre-emuls	ion
Vinyl Acetate	42.4
Butyl Acrylate	10.6
First Initiator Batch	
Water	1.6
Potassium Persulfate	0.06
Reducer Batch	
Water	2.6
Sodium Metabisulfite	0.06
Post-Oxidizer	
Water	0.6
t-BHP Post-Reducer	0.05
Water	0.6
Sodium Metabisulfite	0.04
Total	100

Monomer Pre-emulsi Vinyl Acetate	on 42.4
Butyl Acrylate	10.6
First Initiator Batch	
Water	1.6
Potassium Persulfate	0.06
Reducer Batch	
Water	2.6
Sodium Metabisulfite	0.06
Post-Oxidizer	
Water	0.6
t-BHP	0.05
Post-Reducer Water	0.6
	0.0
Sodium Metabisulfite	0.04
Total	100
_	

n 42.4
10.6
1.6
0.06
2.6
0.06
0.6
0.05
0.6
0.04
100

Effect of different nonionic surfactants


Reactor Cleanliness

- Clot formation < 500 ppm for all formulations.
- Longer ethylene oxide chain in the nonionic **improved** the performance even compared against reference.

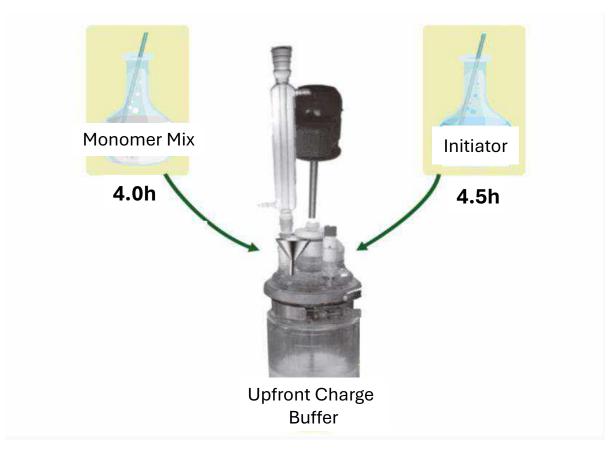
Effect of different nonionic surfactants


Particle Size

- Acceptable particle size range is 200
 400nm.
- Longer ethylene oxide chain in the nonionic surfactant tends to decrease the particle size.

Effect of different nonionic surfactants

Mechanical Stability

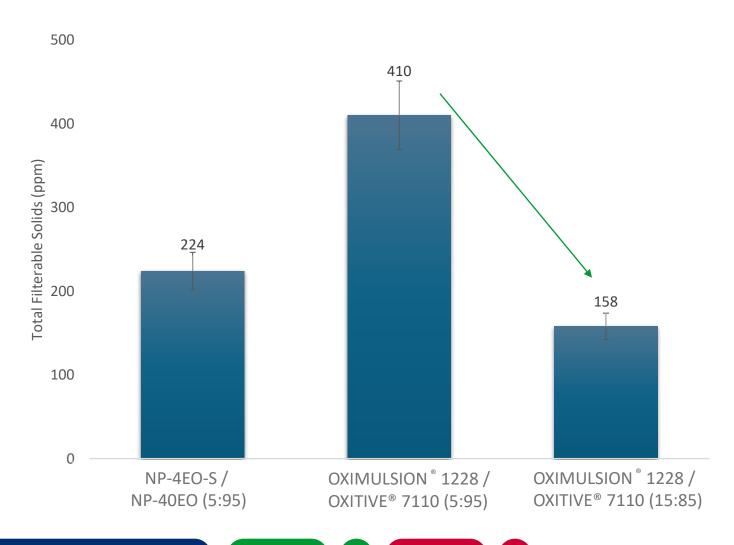

 Longer EO chain in the nonionic improved the mechanical stability;

Emulsion Polymer Formulation

Goal: to evaluate different ratios of nonionic to anionic surfactants:

95:5 / 85:15

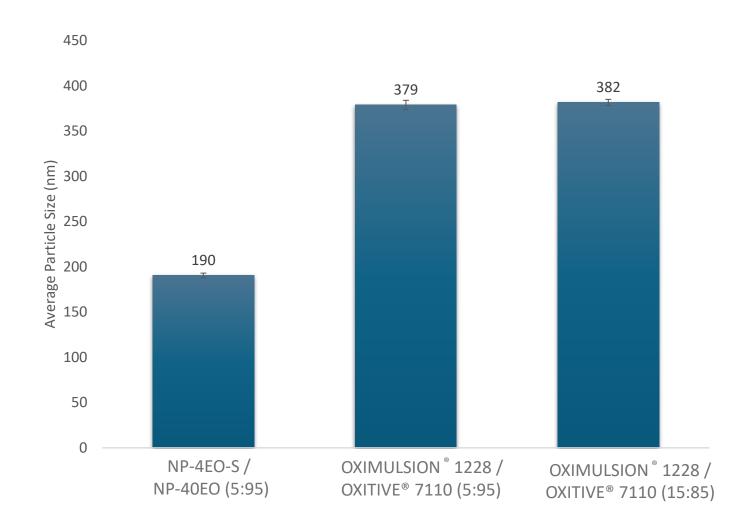
Components (phm)	Formulation 1
Vinyl Acetate	80 %
Butyl acrylate	20 %
	Active Content (phm)
OXITIVE® 7110	3.74 – 4.18
OXIMULSION® 1228	0.22 - 0.66
Persulfate initiator	
Chase Redox	



• Thermal initiator: 4.5h at 70 °C

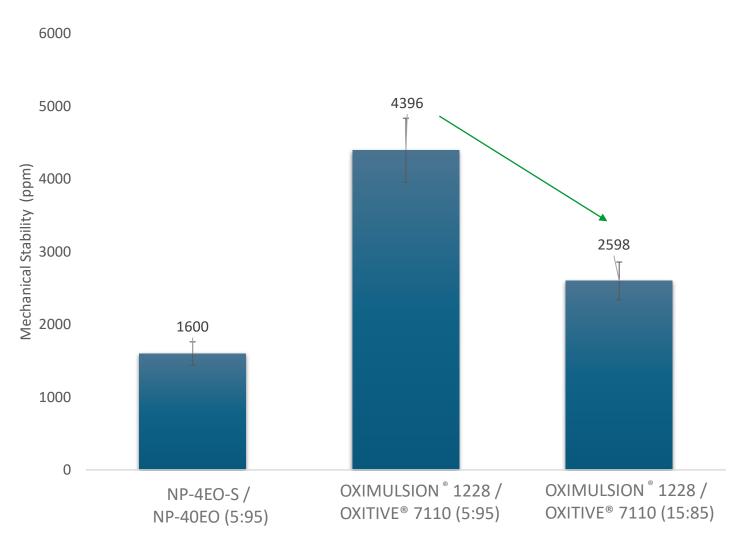
• Solid content: 55 wt.%

Effect of different ratios of nonionic to anionic

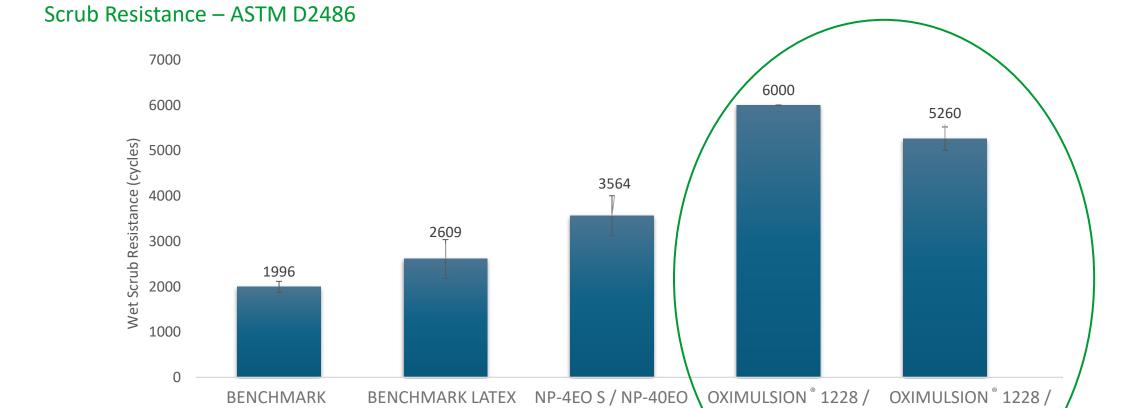

Reactor Cleanliness

- Clot formation < 500
 ppm for all formulations.
- New ratio of anionic to nonionic
 reduced clot formation.

Effect of different ratios of nonionic to anionic


Particle Size

- Acceptable particle size range
 is 200 400nm.
- Low impact in particle size.


Effect of different ratios of nonionic to anionic

Mechanical Stability

- Less than 1.0% clot formed under shear stress.
- New ratio of anionic to nonionic
 reduced clot formation after mechanical stress.

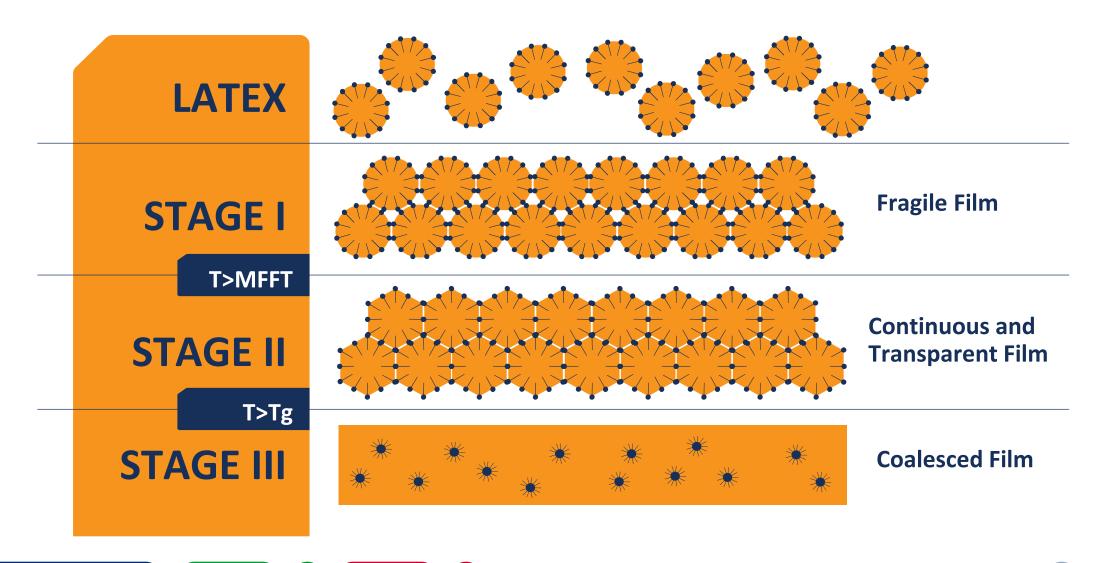
Vinyl-Acrylic Paint

(5:95)

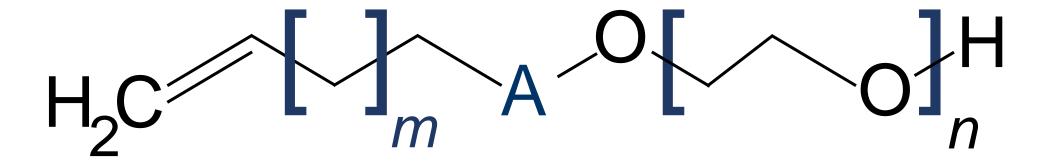
APE-FREE

OXITIVE® 7110 (15:85)

OXITIVE® 7110 (5:95)


LATEX APE

Reactive Surfactants

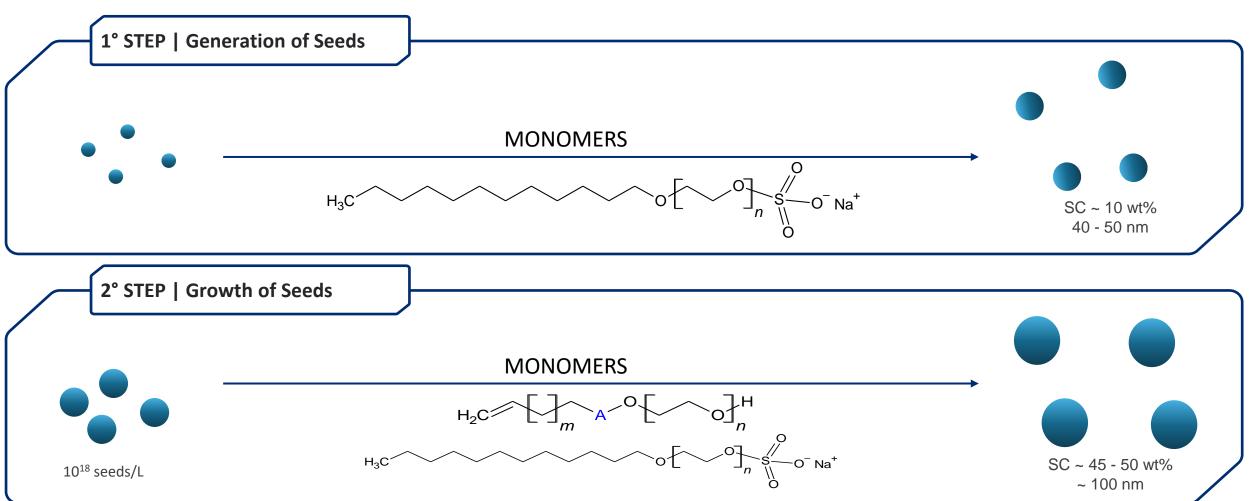

Emulsion Polymerization

Why does it happen?

OXIMULSION REACT® N1

Concentrated Product Solid content >99 wt.%

Water


Behave as **conventional** surfactants

Compatible with all latexes

Two Step Process

Emulsion Polymerization

Source: Asua et. Al., Langmuir 2003, 19, 3212 - 3221.

Emulsion Polymerization

SEEDED SEMI-BATCH PROCESS

Starting Formulations

	Components	w/w	
	Methylmethacrylate (MMA)	0.75	
Latex seed	Butyl acrylate (BA)	0.72	
(Previously	Methacrylic acid	0.03	
prepared)	Anionic surfactant*	0.38	
	Ammonium persulfate	0.004	
	Methylmethacrylate (MMA)	23	
	Butyl acrylate (BA)	22	
Pre-emulsion	Methacrylic acid	1	
	Anionic surfactant*	TBD	
	REACT® N1	TBD	
Thermal Initiator	Ammonium persulfate	0.15	
Ox-redox	Oxidizing Agent	0.02	
Initiator	Reducing Agent	0.02	
* Sodium salt of lauryl ether sulfate			

Effect of Surfactant Composition on Coagulum Formation in EP

Coagulum in Reactor
Thermocouple Impeller

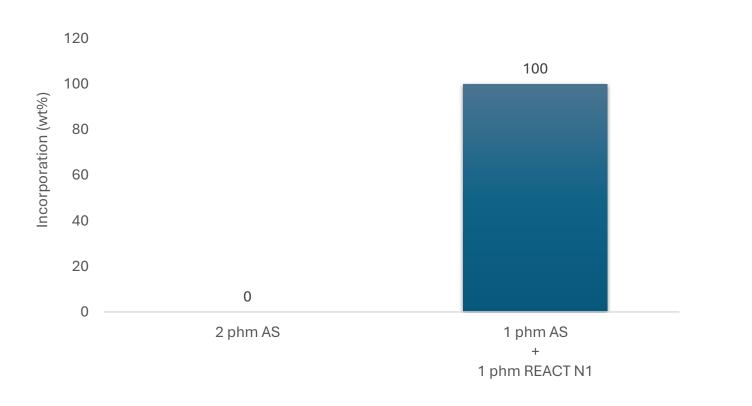
75 wt% REACT® N1

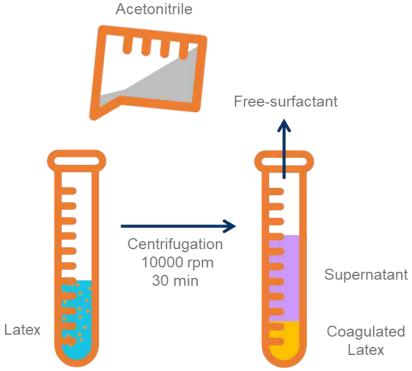
25 wt% Anionic Surfactant

67 wt% REACT® N1
33 wt% Anionic Surfactant

50 wt% REACT® N1
50 wt% Anionic Surfactant

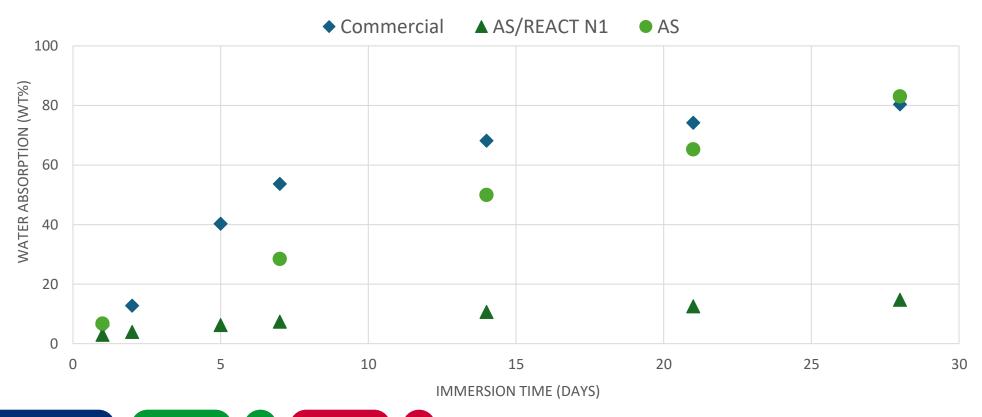
Dispersed coagulum in latex


800 ppm


834 ppm

805 ppm

Incorporation of Reactive Nonionic Surfactant


Surfactant Incorporation = Total Surfactant - Free Surfactant

Water Absorption

Latex films with 2 phm of coalescent immersed in water at 25°C

WHITENING

Latex films with 2 phm of coalescent immersed in water at 25°C after 4 days

Commercial

AS / REACT® N1 (1:1)

Transition to APE- free Surfactants

Emulsion Polymerization

APE-FREE Alternatives to APE-based Nonionic Surfactants

Emulsion Polymerization

APE-FREE Alternatives	HLB	APE-based Nonionic	HLB	
OXITIVE® 7254	13.4	SURFONIC® N-95	13.1	
OXITIVE® 7110	16.9	SURFONIC® NB-307	17.1	
OXITIVE® 7130	17.4	SURFONIC® NB-307	17.1	
OXITIVE® 7140	18.0	SURFONIC® NB-407	17.8	
OXITIVE® 7240	18.0	SURFONIC® NB-407	17.8	

Replacement of APE-based for APE-FREE Surfactants

Emulsion Polymerization

Replacement of APE for APE-FREE Surfactants in Vinyl-Acrylic Latex

APE-free solution
OXIMULSION® B1000 + OXITIVE® 7110
OXIMULSION® 1228 + OXITIVE® 7130
OXIMULSION® 1228 + OXITIVE® 7140
OXIMULSION® 1228 + OXITIVE® 7240
OXIMULSION® 1228 + OXITIVE® 7140
OXIMULSION® 1228 + OXITIVE® 7240
OXIMULSION® 11230 + OXITIVE® 7110

Replacement of APE for APE-FREE Surfactants in Styrene-Acrylic Latex

APE-based	APE-free solution
ND 0 F FO SULFATED + ND 22 FO	OXIMULSION® B1000
NP 9.5 EO SULFATED + NP 23 EO	OXIMULSION® 1228 + OXITIVE® 7110
ND 25 50 CHIEATED - ND 20 50	OXIMULSION® 1228 + OXITIVE® 7110
NP 25 EO SULFATED + NP 30 EO	OXIMULSION® 11230

Replacement of APE for APE-FREE Surfactants in All-Acrylic Latex

APE-based	APE-free solution
	OXIMULSION® 1228
NP 9.5 EO SULFATED	OXIMULSION® 1328
	OXIMULSION® 11230
NP 4 EO SULFATED	OXIMULSION® B 1000
	OXIMULSION® 2742

Q&A Session

Surfactants for Emulsion Polymerization

Contact

Bruno Dario

Research Scientist II – CASE & Performance Products

- +1 (346) 413-1152 (mobile)
- bruno.dario@us.indorama.net

Indorama Ventures – Indovinya

- 8401 New Trails Dr., Suite 150, The Woodlands, TX
- +1 (346) 380-6573
- http://indovinya.indoramaventures.com/

Disclaimer

This presentation and its content ("Material") is proprietary to Indorama Ventures Public Company Limited ("Indorama Ventures") and/or its affiliates (collectively, the "Group") and may not be, in whole or in part, reproduced or disclosed, published, distributed or released to any other person or to the public domain unless the prior written consent from the Group is obtained. In addition, this Material may only be used for the purpose expressly stated herein by Indorama Ventures and may not be used for any other purposes.

No representation or warranty or undertaking, express or implied, is made by the Group as to the accuracy or completeness of the information set forth herein and neither Indorama Ventures nor the Group (or any representatives including, without limitation, its and their directors, shareholders, officers, employees, agents ("Representatives") assume any responsibility whatsoever related hereto.

In addition, this Material may contain "forward-looking" statements of the Group that relate to future events including, without limitation the conditions and prospects of the specific industry and the macro economics as a whole which are, by their nature, subject to significant risks and uncertainties. All statements, including, without limitation, those regarding the future financial position and results of operations, strategy, plans, objectives, goals and targets, future developments in the markets where the Group participates or is seeking to participate and any statements preceded by, followed by or that include the words "target", "believe", "expect", "aim", "intend", "will", "may", "anticipate", "would", "plan", "could", "should, "predict", "project", "estimate", "foresee", "forecast", "seek" or similar words or expressions are forward-looking statements. Such forward-looking statements involve known and unknown risks, uncertainties and other important factors beyond the Group control that could cause the actual results, performance or achievements of the Group to be materially different from the future results, performance or achievements expressed or implied by such forward-looking statements. These forward-looking statements are based on numerous assumptions regarding the Group present and future business strategies and the environment in which the Group will operate in the future and are not a guarantee of future performance.

Such forward-looking statements speak only as at the date of this presentation, and neither Indorama Ventures nor the Group assume any duty or obligation to supplement, amend, update or revise any such statements. In addition, neither Indorama Ventures nor the Group hereby make any representation, warranty or prediction that the results anticipated by such forward-looking statements will be achieved.

As such, no information contained herein may be relied upon as a promise or presentation as to the past, present or future of Indorama Ventures or the Group and use of this Material therefore is subject to informed assessment and independent evaluation of the person to which this Material is disclosed. Further, the receipt of this Material shall not be taken to constitute the giving of investment advice by any of Indorama Ventures or the Group (and/or their respective Representatives) nor render the recipient a client of any such persons for the purpose of any applicable rules or regulations governing investment business or otherwise.